Manufacturer's Declaration

This product is intended for installation in a machine or system, based on the machine directive 2006/42/EC.
It is forbidden to start use of the product until the machine or system into which it should be built is operating in accordance with the EC directives.
The product corresponds to the low voltage directive 2006/95/EC.

Safety Regulations
 Danger!

To prevent injury or damage, only professionals and specialists should work on the devices, following the relevant standards and directives. Please read the Installation and Operational Instructions carefully before installation and initial operation of the device.

Warning:

Without a conformity inspection, this product is not suitable for use in areas where there is a high danger of explosion. This statement is based on directive 94/9 EC (ATEX directive).

Application

This device is used to start and stop mayr ${ }^{\circledR}$ ROBA ${ }^{\oplus}$-takt circuit modules and mayre-clutch brake combinations.
It can be used for alternating 24 VDC coil switching, if a 24 VDC power supply is available.

Function

1-sensor operation: -activated- clutch is energised -deactivated- brake is energised

The respective control of the clutch or brake is indicated via LED. The ROBA ${ }^{\circledR}$-takt circuit module has no over-excitation function.
The brake has priority: The brake is energised independently of the sensor position when the 24 VDC power supply is switched on. The coil is energised with the 24 VDC power supply.
Slope separation: To avoid simultaneous clutch and braking torques, a slope separation of $0-100 \mathrm{~ms}$ between clutch and brake can be set, which acts according to the respective rise time and drop-out time of the coils (see switching time table). This adjustment is carried out via the potentiometers $\mathrm{Ku}=$ clutch (P2) and $\mathrm{Br}=$ brake $(\mathrm{P} 1)$. The factory default setting is 0 ms .

Technical Data

Input voltage
Recommended fuse
Output voltage
Output power
Slope separation
Ambient temperature
Storage temperature
Conductor cross section
Protection
Design

24 VDC SELV/PELV ripple content
$\leq 5 \%$
T 4A
24 VDC
max. 79 W
0-100 ms
(factory default setting is 0 ms)
$0^{\circ} \mathrm{C}$ - +70 ${ }^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$
$0.14-1.5 \mathrm{~mm}^{2} /$ AWG 26-14
IP 00
Printed board with screw-on attachment part or a mounting frame for 35 mm standard mounting rails.

Max. cycle frequencies:	$45{ }^{\circ} \mathrm{C}$	$70{ }^{\circ} \mathrm{C}$	
up to $\quad 1$ A / sizes $3+4$	600	600	cycles / min
approx. 2 A / sizes 5 + 6	240	180	cycles / min
approx. 3 A / size 7	120	75	cycles / min

Please Observe:

Higher cycle frequencies will lead to ROBA $^{\circledR}$-takt circuit module overload and failure.

Wiring Example

(Terminals 2 and 9 bridged)

Table Switching Times

ROBA ${ }^{\text {® }}$-takt size		3	4	5	6	7
Switching times [s] Without overexcitation	$\mathrm{t}_{11} \mathrm{Cl}$	0.010	0.015	0.020	0.030	0.045
	$\mathrm{t}_{1} \mathrm{Cl}$	0.045	0.065	0.080	0.150	0.200
	${ }_{111} \mathrm{Br}$	0.006	0.008	0.010	0.015	0.025
	$\mathrm{t}_{1} \mathrm{Br}$	0.035	0.040	0.055	0.100	0.150
	$\mathrm{t}_{2} \mathrm{Cl}$	0.012	0.020	0.045	0.060	0.090
	t2 Br	0.010	0.018	0.030	0.060	0.090
With overexcitation (only switch-on time)	$\mathrm{t}_{11} \mathrm{Cl}$	0.003	0.005	0.007	0.010	0.015
	$\mathrm{t}_{1} \mathrm{Cl}$	0.025	0.035	0.040	0.075	0.100
	${ }_{111} \mathrm{Br}$	0.002	0.003	0.004	0.006	0.008
	$\mathrm{t}_{1} \mathrm{Br}$	0.020	0.022	0.030	0.050	0.075
Recommended overexcitation period [ms]		10 *	10 *	10	15	20
Min. required slope separation [ms]	with overexcitation	20	25	30	80	120
	$\begin{array}{\|c} \begin{array}{c} \text { without } \\ \text { overexcitation } \end{array} \\ \hline \end{array}$	0	0	15	50	80
Magnitude of overexcitation c. $10 \times$ nominal voltage (limited current)						
Permitted friction work for one single switching QE [J]		3.8×10^{3}	6.2×10^{3}	9×10^{3}	15×10^{3}	25×10^{3}
Total friction work Qiot [[J]		22.5×10^{7}	44×10^{7}	87×10^{7}	171×10^{7}	340×10^{7}

EMC-compatible Installation

In order to comply with the interference resistance for individual components acc. EN 61000-6-2, the DC current input is either shielded or not longer than 3 m . The line for the switch on terminals 7 and 8 must not be longer than 30 m .

Standards

DIN EN 61000-6-2:2006-03
DIN EN 61000-6-4:2002-08
DIN EN 60664-1:2003-11
Interference immunity
Noise emissions
Insulation coordination

The switching times are valid for DC-switching with a heated coil. Deviations are possible The switching times are valid for DC-switching with a heated coil. Deviations are possible
depending on the installation, ambient temperature and the rectifier Type with which the depending on the install
aggregate is operated.

* For operation with overexcitation and high switching frequencies (80-100 \% of the diagram value), the recommended period of overexcitation according to the Table must not be exceeded.

